Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Pharmacal Research 2012-Mar

Anti-inflammatory changes of gene expression by Artemisia iwayomogi in the LPS-stimulated human gingival fibroblast: microarray analysis.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Yeong-Gon Choi
Sujung Yeo
Sung-Hoon Kim
Sabina Lim

Parole chiave

Astratto

The leaves and stems of Asteraceae Artemisia iwayomogi (Ai) for a long time have been known to inhibit inflammatory cytokine production and allergic reactions, and have been used to treat liver diseases. It needs to be elucidated in terms of global gene expression whether Ai has an influence as an anti-inflammatory agent on the cultured human gingival fibroblast stimulated with lipopolysaccharide (LPS). This study investigated the anti-inflammatory changes of the genes by Ai using the Affymetrix genechip human gene 1.0 ST array when the cultured human gingival fibroblast was treated with LPS. It was observed that the inflammation- and immune response-related genes were activated by LPS challenge in the cultured human gingival fibroblast. The array analysis showed that 65 of the 344 genes up-regulated by LPS stimulation, when compared to the control, were down-regulated by the Ai treatment. A number of inflammation- and immune response-related genes of the 65 genes were found. In addition, 78 of the 164 genes down-regulated by the LPS, when compared to the control, were up-regulated by the Ai treatment. The regulatory patterns of the representative genes were correlated with the real-time RT-PCR analysis. The Ai extract and its specific components, scopolin and scopoletin, significantly hindered the production of inflammatory mediators such as IL-6, TNF-α and nitrite in the LPS-challenged fibroblast. This study suggests that Ai can comprehensively inhibit the activation of the inflammation- and immune response-related genes and the inflammatory mediators in the human gingival fibroblast.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge