Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The Arabidopsis book 2002

Arabidopsis thaliana: A Model for the Study of Root and Shoot Gravitropism.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Patrick H Masson
Masao Tasaka
Miyo T Morita
Changhui Guan
Rujin Chen
Kanokporn Boonsirichai

Parole chiave

Astratto

For most plants, shoots grow upward and roots grow downward. These growth patterns illustrate the ability for plant organs to guide their growth at a specified angle from the gravity vector (gravitropism). They allow shoots to grow upward toward light, where they can photosynthesize, and roots to grow downward into the soil, where they can anchor the plant as well as take up water and mineral ions.Gravitropism involves several steps organized in a specific response pathway. These include the perception of a gravistimulus (reorientation within the gravity field), the transduction of this mechanical stimulus into a physiological signal, the transmission of this signal from the site of sensing to the site of response, and a curvature-response which allows the organ tip to resume growth at a predefined set angle from the gravity vector.The primary sites for gravity sensing are located in the cap for roots, and in the endodermis for shoots. The curvature response occurs in the elongation zones for each organ. Upon gravistimulation, a gradient of auxin appears to be generated across the stimulated organ, and be transmitted to the site of response where it promotes a differential growth response. Therefore, while the gravity-induced auxin gradient has to be transmitted from the cap to the elongation zones in roots, there is no need for a longitudinal transport in shoots, as sites for gravity sensing and response overlap in this organ.A combination of molecular genetics, physiology, biochemistry and cell biology, coupled with the utilization of Arabidopsis thaliana as a model system, have recently allowed the identification of a number of molecules involved in the regulation of each phase of gravitropism in shoots and roots of higher plants. In this review, we attempt to summarize the results of these experiments, and we conclude by comparing the molecular and physiological mechanisms that underlie gravitropism in these organs.

BACKGROUND

GSPA: gravitational set point angle; IAA: indole-3-acetic acid; NAA: 1-naphthalene acetic acid; NPA: 1-N-naphthylphthalamic acid; 2,4-D: 2,4-dichlorphenoxy acetic acid; TIBA: 2,3,5-triiodobenzoic acid.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge