Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Obstetrics and Gynecology 2016-Nov

Associations between maternal periconceptional exposure to secondhand tobacco smoke and major birth defects.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Adrienne T Hoyt
Mark A Canfield
Paul A Romitti
Lorenzo D Botto
Marlene T Anderka
Sergey V Krikov
Morgan K Tarpey
Marcia L Feldkamp

Parole chiave

Astratto

BACKGROUND

While associations between secondhand smoke and a few birth defects (namely, oral clefts and neural tube defects) have been noted in the scientific literature, to our knowledge, there is no single or comprehensive source of population-based information on its associations with a range of birth defects among nonsmoking mothers.

OBJECTIVE

We utilized data from the National Birth Defects Prevention Study, a large population-based multisite case-control study, to examine associations between maternal reports of periconceptional exposure to secondhand smoke in the household or workplace/school and major birth defects.

METHODS

The multisite National Birth Defects Prevention Study is the largest case-control study of birth defects to date in the United States. We selected cases from birth defect groups having >100 total cases, as well as all nonmalformed controls (10,200), from delivery years 1997 through 2009; 44 birth defects were examined. After excluding cases and controls from multiple births and whose mothers reported active smoking or pregestational diabetes, we analyzed data on periconceptional secondhand smoke exposure-encompassing the period 1 month prior to conception through the first trimester. For the birth defect craniosynostosis, we additionally examined the effect of exposure in the second and third trimesters as well due to the potential sensitivity to teratogens for this defect throughout pregnancy. Covariates included in all final models of birth defects with ≥5 exposed mothers were study site, previous live births, time between estimated date of delivery and interview date, maternal age at estimated date of delivery, race/ethnicity, education, body mass index, nativity, household income divided by number of people supported by this income, periconceptional alcohol consumption, and folic acid supplementation. For each birth defect examined, we used logistic regression analyses to estimate both crude and adjusted odds ratios and 95% confidence intervals for both isolated and total case groups for various sources of exposure (household only; workplace/school only; household and workplace/school; household or workplace/school).

RESULTS

The prevalence of secondhand smoke exposure only across all sources ranged from 12.9-27.8% for cases and 14.5-15.8% for controls. The adjusted odds ratios for any vs no secondhand smoke exposure in the household or workplace/school and isolated birth defects were significantly elevated for neural tube defects (anencephaly: adjusted odds ratio, 1.66; 95% confidence interval, 1.22-2.25; and spina bifida: adjusted odds ratio, 1.49; 95% confidence interval, 1.20-1.86); orofacial clefts (cleft lip without cleft palate: adjusted odds ratio, 1.41; 95% confidence interval, 1.10-1.81; cleft lip with or without cleft palate: adjusted odds ratio, 1.24; 95% confidence interval, 1.05-1.46; cleft palate alone: adjusted odds ratio, 1.31; 95% confidence interval, 1.06-1.63); bilateral renal agenesis (adjusted odds ratio, 1.99; 95% confidence interval, 1.05-3.75); amniotic band syndrome-limb body wall complex (adjusted odds ratio, 1.66; 95% confidence interval, 1.10-2.51); and atrial septal defects, secundum (adjusted odds ratio, 1.37; 95% confidence interval, 1.09-1.72). There were no significant inverse associations observed.

CONCLUSIONS

Additional studies replicating the findings are needed to better understand the moderate positive associations observed between periconceptional secondhand smoke and several birth defects in this analysis. Increased odds ratios resulting from chance (eg, multiple comparisons) or recall bias cannot be ruled out.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge