Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Molecular Biology 2012-Mar

Biochemical and structural studies on native and recombinant Glycine max UreG: a detailed characterization of a plant urease accessory protein.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Rafael Real-Guerra
Fernanda Staniscuaski
Barbara Zambelli
Francesco Musiani
Stefano Ciurli
Célia R Carlini

Parole chiave

Astratto

Urea is the nitrogen fertilizer most utilized in crop production worldwide. Understanding all factors involved in urea metabolism in plants is an essential step towards assessing and possibly improving the use of urea by plants. Urease, the enzyme responsible for urea hydrolysis, and its accessory proteins, necessary for nickel incorporation into the enzyme active site and concomitant activation, have been extensively characterized in bacteria. In contrast, little is known about their plant counterparts. This work reports a detailed characterization of Glycine max UreG (GmUreG), a urease accessory protein. Two forms of native GmUreG, purified from seeds, were separated by metal affinity chromatography, and their properties (GTPase activity in absence and presence of Ni(2+) or Zn(2+), secondary structure and metal content) were compared with the recombinant protein produced in Escherichia coli. The binding affinity of recombinant GmUreG (rGmUreG) for Ni(2+) and Zn(2+) was determined by isothermal titration calorimetry. rGmUreG binds Zn(2+) or Ni(2+) differently, presenting a very tight binding site for Zn(2+) (K (d) = 0.02 ± 0.01 μM) but not for Ni(2+), thus suggesting that Zn(2+) may play a role on the plant urease assembly process, as suggested for bacteria. Size exclusion chromatography showed that Zn(2+) stabilizes a dimeric form of the rGmUreG, while NMR measurements indicate that rGmUreG belongs to the class of intrinsically disordered proteins. A homology model for the fully folded GmUreG was built and compared to bacterial UreG models, and the possible sites of interaction with other accessory proteins were investigated.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge