Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Applied Physiology 2006-Apr

Brisk production of nitric oxide and associated formation of S-nitrosothiols in early hemorrhage.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
James L Atkins
Billy W Day
Michael T Handrigan
Zhe Zhang
Motilal B Pamnani
Nikolai V Gorbunov

Parole chiave

Astratto

The results of previous inhibitor studies suggest that there is some increase in nitric oxide (NO) production from constitutive NO synthase in early hemorrhage (H), but the magnitude of NO production early after H has not been previously assessed. It is generally believed that only modest production rates are possible from the constitutively expressed NO synthases. To study this, anesthetized male Sprague-Dawley rats were subjected to 90 min of isobaric (40 mmHg) H. During this period of time, the dynamics of accumulation of NO intermediates in the arterial blood was assessed using electron paramagnetic resonance spectroscopy, chemiluminescence, fluorescence imaging, and mass spectrometry. Electron paramagnetic resonance-detectable NO adducts were also measured with spin traps in blood plasma and red blood cells. H led to an increase in the concentration of hemoglobin-NO from 0.9 +/- 0.2 to 4.8 +/- 0.7 microM. This accumulation was attenuated by a nonselective inhibitor of NO synthase, NG-nitro-L-argininemethyl ester (L-NAME), but not by NG-nitro-D-argininemethyl ester (D-NAME) or 1400W. Administration of L-NAME (but not 1400W or D-NAME) during H produced a short-term increase in mean arterial pressure ( approximately 90%). In H, the level of N oxides in red blood cells increased sevenfold. S-nitrosylation of plasma proteins was revealed with "biotin switch" techniques. The results provide compelling evidence that there is brisk production of NO in early H. The results indicate that the initial compensatory response to H is more complicated than previously realized, and it involves an orchestrated balance between intense vasoconstrictor and vasodilatory components.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge