Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 2014-Apr

Cannabinoid receptor type 1 activation by arachidonylcyclopropylamide in rat aortic rings causes vasorelaxation involving calcium-activated potassium channel subunit alpha-1 and calcium channel, voltage-dependent, L type, alpha 1C subunit.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
E Sánchez-Pastor
F Andrade
J M Sánchez-Pastor
A Elizalde
M Huerta
A Virgen-Ortiz
X Trujillo
A Rodríguez-Hernández

Parole chiave

Astratto

Cannabinoids are key regulators of vascular tone, some of the mechanisms involved include the activation of cannabinoid receptor types 1 and 2 (CB); the transient receptor potential cation channel, subfamily V, member 1 (TRPV1); and non-(CB(1))/non-CB2 receptors. Here, we used the potent, selective CB(1) agonist arachidonylcyclopropylamide (ACPA) to elucidate the mechanism underlying vascular tone regulation. Immunohistochemistry and confocal microscopy revealed that CB(1) was expressed in smooth muscle and endothelial cells in rat aorta. We performed isometric tension recordings in aortic rings that had been pre-contracted with phenylephrine. In these conditions, ACPA caused vasorelaxation in an endothelium-independent manner. To confirm that the effect of ACPA was mediated by CB(1) receptor, we repeated the experiment after blocking these receptors with a selective antagonist, AM281. In these conditions, ACPA did not cause vasorelaxation. We explored the role of K(+) channels in the effect of ACPA by applying high-K(+) solution to induce contraction in aortic rings. In these conditions, the ACPA-induced vasorelaxation was about half that observed with phenylephrine-induced contraction. Thus, K(+) channels were involved in the ACPA effect. Furthermore, the vasorelaxation effect was similarly reduced when we specifically blocked calcium-activated potassium channel subunit alpha-1 (KCa1.1) (MaxiK; BKCa) prior to adding ACPA. Finally, ACPA-induced vasorelaxation was also diminished when we specifically blocked the calcium channel, voltage-dependent, L type, alpha 1C subunit (Ca(v)1.2). These results showed that ACPA activation of CB(1) in smooth muscle caused vasorelaxation of aortic rings through a mechanism involving the activation of K(Ca)1.1 and the inhibition of Ca(v)1.2.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge