Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental and Molecular Medicine 2006-Jun

Cell type-specific upregulation of myristoylated alanine-rich C kinase substrate and protein kinase C-alpha, -beta I, -beta II, and -delta in microglia following kainic acid-induced seizures.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Su Yong Eun
Eun Hae Kim
Kee Seok Kang
Hwa Jung Kim
Sangmee Ahn Jo
Soon Jong Kim
Su Hyun Jo
Sang Jeong Kim
Perry J Blackshear
Jun Kim

Parole chiave

Astratto

Myristoylated alanine-rich C kinase substrate (MARCKS) is a widely distributed protein kinase C (PKC) substrate and has been implicated in actin cytoskeletal rearrangement in response to extracellular stimuli. Although MARCKS was extensively examined in various cell culture systems, the physiological function of MARCKS in the central nervous system has not been clearly understood. We investigated alterations of cellular distribution and phosphorylation of MARCKS in the hippocampus following kainic acid (KA)-induced seizures. KA (25 mg/kg, i.p.) was administered to eight to nine week-old C57BL/6 mice. Behavioral seizure activity was observed for 2 h after the onset of seizures and was terminated with diazepam (8 mg/kg, i.p.). The animals were sacrificed and analyzed at various points in time after the initiation of seizure activity. Using double-labeling immunofluorescence analysis, we demonstrated that the expression and phosphorylation of MARCKS was dramatically upregulated specifically in microglial cells after KA-induced seizures, but not in other types of glial cells. PKC alpha, beta I, beta II and delta, from various PKC isoforms examined, also were markedly upregulated, specifically in microglial cells. Moreover, immunoreactivities of phosphorylated MARCKS were co-localized in the activated microglia with those of the above isoforms of PKC. Taken together, our in vivo data suggest that MARCKS is closely linked to microglial activation processes, which are important in pathological conditions, such as neuroinflammation and neurodegeneration.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge