Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Food and Chemical Toxicology 1994-Feb

Cellular and molecular mechanisms in photochemical sensitization: studies on the mechanism of action of psoralens.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
J D Laskin

Parole chiave

Astratto

The interaction of chemicals and light to induce sensitization reactions in the skin is a complex multistep process resulting in physiological changes in both the dermal and epidermal cell layers as well as characteristic inflammatory reactions. It is becoming increasingly apparent that an array of growth factors and cytokines acting on different components of the skin are involved in the regulation of these processes. One of the best characterized classes of chemical photosensitizers are the psoralens, a group of compounds that must be activated by UV light in wavelengths ranging from 320 to 400 nm (UVA) to initiate their biological actions. Recent evidence suggests that the ability of the psoralens to induce sensitization reactions, which include alterations in epidermal cell growth and differentiation, is highly specific and due to interactions with the epidermal growth factor (EGF) receptor. Specific receptor proteins for the psoralens have been identified in cytoplasmic and membrane fractions of responsive cells. Binding of psoralens to these proteins is of high affinity and reversible. UVA light causes psoralens to photoalkylate their receptors, a process thought to activate the receptor. One early biochemical event at the cell surface membrane linked to psoralen-receptor activation is the inhibition of EGF binding and alterations in the structure and function of the EGF receptor. These findings suggest that the cell surface membrane is an important target for chemical photosensitizers such as the psoralens. In addition, since photoactivated psoralens modulate epidermal cell growth and differentiation, the ability of these compounds to modify the function of the EGF receptor may underlie their biological activity as chemical photosensitizers.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge