Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cellular Biochemistry 2019-Oct

Centaurea cyanus extracted 13-O-acetylsolstitialin A decrease Bax/Bcl-2 ratio and expression of cyclin D1/Cdk-4 to induce apoptosis and cell cycle arrest in MCF-7 and MDA-MB-231 breast cancer cell lines.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Mohammad Shahrestanaki
Mahboobeh Bagheri
Mustafa Ghanadian
Mahmoud Aghaei
Seyyed Jafari

Parole chiave

Astratto

Natural products are considered recently as one of the source for production of efficient therapeutical agents for breast cancer treatment. In this study, a sesquiterpene lactone, 13-O-acetylsolstitialin A (13ASA), isolated from Centaurea cyanus, showed cytotoxic activities against MCF-7 and MDA-MB-231 breast cancer cell lines using standard 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. To find the mechanism of action of cytotoxicity, annexin V/propidium iodide (PI) staining was performed for evaluation of apoptosis. This process was further confirmed by immunoblotting of anti- and proapoptotic, Bcl-2 and Bax, proteins. Cell cycle arrest was evaluated by measurement of fluorescence intensity of PI dye and further confirmed by immunoblotting of Cdk-4 and cyclin D1. Mitochondrial transmembrane potential (ΔΨm) and generation of reactive oxygen species (ROS) were measured using the JC-1 and DCFDA fluorescence probes, respectively. These experiments showed that 13ASA is a potent cytotoxic agent, which activates apoptosis-mediated cell death. In response to this compound, Bax/Bcl-2 ratio was noticeably increased in MCF-7 and MDA-MB-231 cells. Moreover, 13ASA induced cell cycle arrest at subG1 and G1 phases by decreasing protein levels of cyclin D1 and Cdk-4. It was done possibly through the decrease of ΔΨm and increase of ROS levels which induce apoptosis. In conclusion, this study mentioned that 13ASA inhibit the growth of MCF-7 and MDA-MB-231 breast cancer cell lines through the induction of cell cycle arrest, which triggers apoptotic pathways. 13ASA can be considered as a susceptible compound for further investigation in breast cancer study.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge