Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Virology 2002-Jul

Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Angela J Sanchez
Martin J Vincent
Stuart T Nichol

Parole chiave

Astratto

Crimean-Congo hemorrhagic fever (CCHF) virus is the cause of an important tick-borne disease of humans throughout regions of Africa, Europe, and Asia. Like other members of the genus Nairovirus, family Bunyaviridae, the CCHF virus M genome RNA segment encodes the virus glycoproteins. Sequence analysis of the CCHF virus (Matin strain) M RNA segment revealed one major open reading frame that potentially encodes a precursor polyprotein 1,689 amino acids (aa) in length. Comparison of the deduced amino acid sequences of the M-encoded polyproteins of Nigerian, Pakistani, and Chinese CCHF virus strains revealed two distinct protein regions. The carboxyl-terminal 1,441 aa are relatively highly conserved (up to 8.4% identity difference), whereas the amino-terminal 243 to 248 aa are highly variable (up to 56.4% identity difference) and have mucin-like features, including a high serine, threonine, and proline content (up to 47.3%) and a potential for extensive O-glycosylation. Analysis of released virus revealed two major structural glycoproteins, G2 (37 kDa) and G1 (75 kDa). Virus protein analysis by various techniques, including pulse-chase analysis and/or reactivity with CCHF virus-specific polyclonal and antipeptide antibodies, demonstrated that the 140-kDa (which contains the mucin-like region) and 85-kDa nonstructural proteins are the precursors of the mature G2 and G1 proteins, respectively. The amino termini of the CCHF virus (Matin strain) G2 and G1 proteins were established by microsequencing to be equivalent to aa 525 and 1046, respectively, of the encoded polyprotein precursor. The tetrapeptides RRLL and RKPL are immediately upstream of the cleavage site for mature G2 and G1, respectively. These are completely conserved among the predicted polyprotein sequences of all the CCHF virus strains and closely resemble the tetrapeptides that represent the major cleavage recognition sites present in the glycoprotein precursors of arenaviruses, such as Lassa fever virus (RRLL) and Pichinde virus (RKLL). These results strongly suggest that CCHF viruses (and other members of the genus Nairovirus) likely utilize the subtilase SKI-1/S1P-like cellular proteases for the major glycoprotein precursor cleavage events, as has recently been demonstrated for the arenaviruses.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge