Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta Physiologica Sinica 2004-Oct

[Chronic intermittent hypoxia decreases acute hypoxic inhibition of voltage-gated potassium channel in rat pulmonary arterial smooth muscle cells].

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Bi Tang
Ming Tang
Yi-Mei Du
Chang-Jin Liu
Zhi-Gang Hong
Hong-Yan Luo
Xin-Wu Hu
Yuan-Long Song
Jiao-Ya Xi
Jurgen Hescheler

Parole chiave

Astratto

For determination the ionic mechanisms of the hypoxic acclimatization at the level of channels, male Spradue-Dawley rats were divided into two groups: control normoxic group and chronic intermittent hypoxic group [O2 concentration: (10 +/-0.5)%, hypoxia 8 h a day]. Using whole cell patch-clamp technique, voltage-gated potassium channel currents (IK(V)) were recorded in freshly isolated pulmonary arterial smooth muscle cells (PASMCs) of rat with acute isolated method. The effect of acute hypoxia on IK(V) of PASMCs from chronic intermittent hypoxia group was investigated to offer some basic data for clarifying the ionic mechanisms of the hypoxic acclimatization. The results showed: (1) In control normoxic group, after acute hypoxia free-Ca(2+) solution, the resting membrane potential (Em) of PASMCs was depolarized significantly from -47.2+/-2.6 mV to -26.7+/-1.2 mV, and the IK(V) of PASMCs was decreased significantly from 153.4+/-9.5 pA/pF to 70.1+/-0.6 pA/pF, the peak current percent inhibition was up to (57.6+/-3.3)% at +60 mV, and current-voltage relationship curve shifted to the right. (2) In chronic intermittent hypoxic group, the IK(V) of PASMCs was decreased significantly by exposure to intermittent hypoxia in a time-dependent manner, appeared to start on day 10 and continued to day 30 (the longest time tested) of hypoxia, and current-voltage relationship curve shifted to the right in a time-dependent manner. (3) Compared with the control normoxic group, the percent IK(V) inhibition by acute hypoxia was significantly attenuated in the chronic intermittent hypoxia group and this inhibition effect declined with time exposure to hypoxia. The results suggest that K(V) inhibition was significantly attenuated by chronic intermittent hypoxia, and this effect may be a critical mechanism of the body hypoxic acclimatization.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge