Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Medical Informatics and Decision Making 2019-05

Chronic wound assessment and infection detection method.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Jui-Tse Hsu
Yung-Wei Chen
Te-Wei Ho
Hao-Chih Tai
Jin-Ming Wu
Hsin-Yun Sun
Chi-Sheng Hung
Yi-Chong Zeng
Sy-Yen Kuo
Feipei Lai

Parole chiave

Astratto

Numerous patients suffer from chronic wounds and wound infections nowadays. Until now, the care for wounds after surgery still remain a tedious and challenging work for the medical personnel and patients. As a result, with the help of the hand-held mobile devices, there is high demand for the development of a series of algorithms and related methods for wound infection early detection and wound self monitoring.This research proposed an automated way to perform (1) wound image segmentation and (2) wound infection assessment after surgical operations. The first part describes an edge-based self-adaptive threshold detection image segmentation method to exclude nonwounded areas from the original images. The second part describes a wound infection assessment method based on machine learning approach. In this method, the extraction of feature points from the suture area and an optimal clustering method based on unimodal Rosin threshold algorithm that divides feature points into clusters are introduced. These clusters are then merged into several regions of interest (ROIs), each of which is regarded as a suture site. Notably, a support vector machine (SVM) can automatically interpret infections on these detected suture site.For (1) wound image segmentation, boundary-based evaluation were applied on 100 images with gold standard set up by three physicians. Overall, it achieves 76.44% true positive rate and 89.04% accuracy value. For (2) wound infection assessment, the results from a retrospective study using confirmed wound pictures from three physicians for the following four symptoms are presented: (1) Swelling, (2) Granulation, (3) Infection, and (4) Tissue Necrosis. Through cross-validation of 134 wound images, for anomaly detection, our classifiers achieved 87.31% accuracy value; for symptom assessment, our classifiers achieved 83.58% accuracy value.This augmentation mechanism has been demonstrated reliable enough to reduce the need for face-to-face diagnoses. To facilitate the use of this method and analytical framework, an automatic wound interpretation app and an accompanying website were developed.201505164RIND , 201803108RSB .

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge