Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Core Evidence 2017

Clinical utility of patiromer, sodium zirconium cyclosilicate, and sodium polystyrene sulfonate for the treatment of hyperkalemia: an evidence-based review.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Mario V Beccari
Calvin J Meaney

Parole chiave

Astratto

BACKGROUND

Hyperkalemia is a serious medical condition that often manifests in patients with chronic kidney disease and heart failure. Renin-angiotensin-aldosterone system inhibitors are known to improve outcomes in these disease states but can also cause drug-induced hyperkalemia. New therapeutic options exist for managing hyperkalemia in these patients which warrant evidence-based evaluation.

OBJECTIVE

The objective of this article was to review the efficacy and safety evidence for patiromer, sodium zirconium cyclosilicate (ZS9), and sodium polystyrene sulfonate (SPS) for the treatment of hyperkalemia.

METHODS

Current treatment options to enhance potassium excretion are SPS and loop diuretics, which are complicated by ambiguous efficacy and known toxicities. Patiromer and ZS9 are new agents designed to address this treatment gap. Both unabsorbable compounds bind potassium in the gastrointestinal (GI) tract to facilitate fecal excretion. The capacity to bind other medications in the GI tract infers high drug-drug interaction potential, which has been demonstrated with patiromer but not yet investigated with ZS9 or SPS. Phase II and III clinical trials of patiromer and ZS9 demonstrated clear evidence of a dose-dependent potassium-lowering effect and the ability to initiate, maintain, or titrate renin-angiotensin-aldosterone system inhibitors. There is limited evidence base for SPS: two small clinical trials indicated potassium reduction in chronic hyperkalemia. All agents may cause adverse GI effects, although they are less frequent with ZS9. Concerns remain for SPS to cause rare GI damage. Electrolyte abnormalities occurred with patiromer and SPS, whereas urinary tract infections, edema, and corrected QT-interval prolongations were reported with ZS9.

CONCLUSIONS

Patiromer and ZS9 have improved upon the age-old standard SPS for the treatment of hyperkalemia. Additional research should focus on drug-drug interactions in patients on multiple medications, incidence of rare adverse events, and use in high-risk populations.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge