Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biochemistry 1991-Nov

Comparative affinity labeling with reactive UDP-glucose analogues: possible locations of five lysyl residues around the substrate bound to potato tuber UDP-glucose pyrophosphorylase.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Y Kazuta
K Tanizawa
T Fukui

Parole chiave

Astratto

By using two reactive analogues of UDP-Glc, uridine di- and triphosphopyridoxals, we have recently probed the substrate-binding site in potato tuber UDP-Glc pyrophosphorylase [EC 2.7.7.9]. In this work, pyridoxal diphospho-alpha-D-glucose was used for the same purpose. This compound is also a reactive UDP-Glc analogue but having its reactive group on the opposite side of the pyrophosphate linkage to those of the above two compounds. The enzyme was rapidly inactivated when incubated with the compound at very low concentrations followed by reduction with sodium borohydride. The inactivation was almost completely prevented by UDP-Glc and UTP. Complete inactivation correspond to the incorporation of 1.0 mol of the reagent per mol of enzyme monomer. The label was found to be distributed in five lysyl residues (Lys-263, Lys-329, Lys-367, Lys-409, and Lys-40. All of these results were similar to those obtained previously with the other compounds, suggesting the presence of a cluster of five lysyl residues at or near the substrate-binding site of this enzyme. However, the incorporations of labels into each lysyl residue differed depending on the compounds used. The substrate retarded the incorporations in different manners. Based on the combined results of the present and previous studies, a hypothetical model is presented for the possible locations of the five lysyl residues around the substrate bound to the enzyme. This model is consistent with the kinetic properties of mutant enzymes in which the five lysyl residues were individually replaced by glutamine via site-directed mutagenesis.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge