Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Comptes Rendus - Biologies 2009-Sep

Comparative effect of potassium on K and Na uptake and transport in two accessions of Arabidopsis thaliana during salinity stress.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Rym Kaddour
Nawel Nasri
Sabah M'rah
Pierre Berthomieu
Mokhtar Lachaâl

Parole chiave

Astratto

Potassium-sodium interaction was compared in two natural accessions of Arabidopsis thaliana, Columbia-0 and NOK2. Seedlings were grown in the presence of 0 or 50 mM NaCl and 0.1; 0.625 or 2.5 mM K(+). At the lowest K(+) concentration, salt treatment inhibited both K(+) uptake and growth. Increasing the K(+) availability did not modified salt response in Columbia-0, but restored nearly normal net K(+) uptake in NaCl condition and alleviated NaCl growth reduction in NOK2. The effect of K(+) and NaCl on transcript level of several K(+) and Na(+) transporters in both shoots and roots was assessed using semi-quantitative RT-PCR. The mRNA abundance of the NHX1 and SOS1 Na(+)/H(+) antiporters was significantly increased by 50 mM NaCl in the two accessions. NHX1, which is responsible for Na(+) sequestration into vacuoles, was more up-regulated in NOK2 leaves than in Columbia-0's in NaCl stress condition. AKT1, which is the major channel involved in K(+) absorption, was down-regulated in salt stress condition, but was not responding to K(+) treatments. Only in NOK2, SKOR and AKT2, which respectively control xylem and phloem K(+) transport, were markedly up-regulated by 2.5 mM K(+) in both roots and shoots, independently of NaCl. Phenotypic and gene expression analyses suggest that the relative salt tolerance of NOK2 is mainly due to a high ability to sequester Na(+) in the vacuole and to take up and transport K(+). Up-regulation of SKOR and AKT2 by K(+), and of NHX1 by NaCl could participate in determining this phenotype.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge