Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Growth Regulation 2000-Dec

Cortical actin filaments potentially interact with cortical microtubules in regulating polarity of cell expansion in primary roots of maize (Zea mays L.).

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
E B Blancaflor

Parole chiave

Astratto

Evidence is accumulating implicating cortical microtubules in the directional control of cell expansion. However, the role of actin filaments in this process is still uncertain. To determine the involvement of actin in cell elongation, the organization of actin filaments in primary roots of maize (Zea mays L.) was examined by use of an improved fluorochrome-conjugated phalloidin-labeling method. With this method, a previously undetected state of actin organization was revealed in the elongation and maturation zone of maize roots. Fine transversely oriented cortical actin was observed in all cells of the elongation zone, including the epidermis, cortex, and vascular tissues. The orientation of cortical actin shifted from a predominantly transverse orientation to oblique, longitudinal, and/or random arrangements as the cells matured. The reorientation of cortical actin in maturing root cells mimics the behavior of cortical microtubules reported in other studies. Furthermore, roots treated with the microtubule-stabilizing drug taxol improved the quality of actin preservation as evidenced by the thicker bundles of cortical actin. This suggested that taxol was also capable of stabilizing the cortical actin networks. The elongation of roots exposed to 1 micromole Latrunculin B, an actin-disrupting drug, was inhibited, and after 24 h the roots exhibited moderate swelling particularly along the elongation zone. Latrunculin B also caused microtubules to reorient from transverse to oblique arrays. The results from this study provide evidence that cortical microtubules and actin filaments respond in a coordinated way to environmental signals and may well depend on both elements of the cytoskeleton.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge