Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Fundamental and applied toxicology : official journal of the Society of Toxicology 1996-Jul

Cyanide detoxification in rats exposed to acetonitrile and fed a low protein diet.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
I Swenne
U J Eriksson
R Christoffersson
B Kågedal
P Lundquist
L Nilsson
T Tylleskär
H Rosling

Parole chiave

Astratto

Different neurological syndromes have been associated with exposure to cyanide. Dietary cyanide exposure from cassava roots combined with a low intake of the sulfur amino acids necessary for cyanide detoxification has been implicated in the causation of konzo, an upper motoneuron disease identified in Africa. We have investigated the effect of a low protein diet on the capacity for cyanide detoxification. Rats were fed normal chow containing 18% protein or a low protein diet with 5% protein. To expose rats to cyanide the drinking water was supplemented with 40 or 80 mM acetonitrile (CH3CN) for up to 4 weeks. Weight gain was monitored and 24-hr urines were collected for analyses of total sulfur, inorganic sulfate, thiocyanate, and 2-aminothiolazine-4-carboxylic acid (ATC). Blood was collected for analyses of cyanide and cyanate. Rats on a normal diet grew throughout the experiment, while those on a low protein diet initially lost weight and then stabilized at a constant weight. Rats exposed to acetonitrile all progressively lost weight, those on a low protein diet at the highest rate. Signs of neurological damage were not observed. Rats not exposed to acetonitrile excreted < 0.2% of sulfur as thiocyanate and those on a low protein diet reduced their total sulfur excretion to one-third that of rats of the normal diet. Rats on the normal diet did not change total sulfur excretion during exposure to acetonitrile, although thiocyanate now contributed more than two-thirds of excreted sulfur. Rats on a low protein diet exposed to acetonitrile increased both total sulfur and thiocyanate excretion to the levels of rats on a normal diet. Rats exposed to acetonitrile had manyfold increases of circulating concentrations of cyanide and cyanate and of urinary excretion of ATC. There was a positive correlation between blood cyanide concentrations and the plasma concentration of cyanate. It is concluded that the rat has a high capacity for detoxification of cyanide. During adaptation to a low protein intake, sulfur is conserved but cyanide detoxification is still possible at the cost of extensive protein catabolism. It is thus possible that subclinical cyanide exposure could interfere with normal growth and development. The observation of a relationship between circulating cyanide on the one hand and circulating cyanate and urinary excretion of ATC on the other highlights the possibility that cyanide metabolites may mediate neurotoxic effects of cyanide.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge