Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cell Communication and Signaling 2018-Sep

DNA damage and apoptosis induced by a potent orally podophyllotoxin derivative in breast cancer.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Yajie Wang
Hua Sun
Zhiyan Xiao
Gang Zhang
Dan Zhang
Xiuqi Bao
Fangfang Li
Shaoyu Wu
Yuanchao Gao
Ning Wei

Parole chiave

Astratto

BACKGROUND

Targeting TopoisomeraseII (TopoII) and generate enzyme mediated DNA damage is an effective strategy for treatment of breast cancer. TopoII is known as a validated target for drug discovery and cancer chemotherapy.

METHODS

XWL-1-48, a new orally podophyllotoxin derivative, was designed and synthesized. The effect of XWL-1-48 on TopoII binding and activity was determined by molecular docking software and kDNA-decatenation assay, respectively. In vitro and in vivo breast cancer models were used to document the antitumor activity of XWL-1-48. Cellular apoptosis, cell cycle and ROS were analyzed by flow cytometry. Alteration of XWL-1-48-mediated downstream pathways was determined by western blot analysis.

RESULTS

The cytotoxicity of XWL-1-48 is more potent than that of its congener GL331. Molecular docking demonstrated that XWL-1-48 could bind to TopoII through forming two strong hydrogen bonds and potential pi-pi interactions. Noticeably, XWL-1-48 exerts potent antitumor activity in in vitro and in vivo breast cancer model. Treatment with XWL-1-48 caused ROS generation and triggered DNA damage through induction of γ-H2AX and activation of ATM/p53/p21 pathway. Further studies showed that XWL-1-48 led to S-phase arrest and mitochondrial apoptosis. Meanwhile, XWL-1-48 significantly blocked PI3K/Akt/Mdm2 pathway and enhanced Mdm2 degradation.

CONCLUSIONS

XWL-1-48 may be a promising orally topoII inhibitor, its mechanisms are associated with suppression of TopoII, induction of DNA damage and apoptosis, blockage of PI3K/AKT/Mdm2 pathway.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge