Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Rheumatology 2011-Feb

Development of an in vitro model to investigate joint ochronosis in alkaptonuria.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Laura Tinti
Adam M Taylor
Annalisa Santucci
Brenda Wlodarski
Peter J Wilson
Jonathan C Jarvis
William D Fraser
John S Davidson
Lakshminarayan R Ranganath
James A Gallagher

Parole chiave

Astratto

OBJECTIVE

Alkaptonuria (AKU) is a genetic disorder caused by lack of the enzyme responsible for breaking down homogentisic acid (HGA), an intermediate in tyrosine metabolism. HGA is deposited as a polymer, termed ochronotic pigment, in collagenous tissues. Pigmentation is progressive over many years, leading to CTDs including severe arthropathies. To investigate the mechanism of pigmentation and to determine how it leads to arthropathy, we aimed to develop an in vitro model of ochronosis.

METHODS

Osteosarcoma cell lines MG63, SaOS-2 and TE85 were cultured in medium containing HGA from 0.1 μM to 1 mM. Cultures were examined by light microscopy and transmission electron microscopy, and Schmorl's stain was used to detect pigment deposits in vitro, following the observation that this stain identifies ochronotic pigment in AKU tissues. The effects of HGA on cell growth and collagen synthesis were also determined.

RESULTS

There was a dose-related deposition of pigment in cells and associated matrix from 33 μM to 0.33 mM HGA. Pigmentation in vitro was much more rapid than in vivo, indicating that protective mechanisms exist in tissues in situ. Pigment deposition was dependent on the presence of cells and was observed at HGA concentrations that were not toxic. There was an inhibition of cell growth and a stimulation of type I collagen synthesis up to 0.33 mM HGA, but severe cell toxicity at 1 mM HGA.

CONCLUSIONS

We have developed an in vitro model of ochronosis that should contribute to understanding joint destruction in AKU and to the aetiology of OA.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge