Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archiv der Pharmazie 2005-Jun

Different environments for a realistic simulation of GPCRs-application to the M2 muscarinic receptor.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Kirstin Jöhren
Hans-Dieter Höltje

Parole chiave

Astratto

A model of the human M(2) muscarinic receptor was taken as an example for a class A G-protein coupled receptor to explore the influence of different environments in a molecular dynamics simulation (MDS) on the protein structure. The most commonly used environment is the vacuum, although it is very unnatural for a transmembrane protein. As an alternative a membrane-like system, consisting of a lipophilic central layer and two aqueous flanking layers, was tested. The most realistic system that can be applied is a phospholipid bilayer with a surrounding physiological sodium chloride solution. From all systems good protein structures were received, nevertheless clear differences between the systems were detected in the structural comparison of the models. Subsequently it was analyzed whether the observed structural differences influence ligand binding. For this purpose the antagonist (S)-scopolamine was docked into the binding cavity, which is well known by many reported single and multiple point mutations. As expected from the observed structural variations triggered by the type of environment employed in MDS, also differences in the binding mode of (S)-scopolamine were detected, all contacts, however, which are known to be important were found.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge