Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Physiology - Lung Cellular and Molecular Physiology 2006-Oct

Dimethyphenylpiperazinium, a nicotinic receptor agonist, downregulates inflammation in monocytes/macrophages through PI3K and PLC chronic activation.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Marie-Renée Blanchet
Evelyne Israël-Assayag
Pascal Daleau
Marie-Josée Beaulieu
Yvon Cormier

Parole chiave

Astratto

Activation of nicotinic acetylcholine receptors (nAChRs) on inflammatory cells induces anti-inflammatory effects. The intracellular mechanisms that regulate this effect are still poorly understood. In neuronal cells, nAChRs are associated with phosphatidylinositol 3-kinase (PI3K). This enzyme, which can activate phospholipase C (PLC), is also present in monocytes. The aim of this study was to assess the role of these proteins in the signaling pathways involved in the anti-inflammatory effect of dimethylphenylpiperazinium (DMPP), a synthetic nAChR agonist, on monocytes and macrophages. The results indicate that PI3K is associated with alpha3, -4, and -5 nAChR subunits in monocytes. The PI3K inhibitors wortmannin and LY294002 abrogated the inhibitory effect of DMPP on LPS-induced TNF release by monocytes. Treatment with DMPP for 24 and 48 h provoked a mild PLC phosphorylation, which was blocked by the nAChR antagonist mecamylamine and reversed by PI3K inhibitors. Treatment of monocytes and alveolar macrophages with DMPP reduced the inositol 1,4,5-trisphosphate (IP3)-dependent intracellular calcium mobilization induced by platelet-activating factor (PAF), an effect that was reversed by mecamylamine in alveolar macrophages. DMPP did not have any effect on PAF receptor expression. DMPP also inhibited the thapsigargin-provoked calcium release, indicating that the endoplasmic reticulum calcium stores might be depleted by treatment with the nAChR agonist. Taken together, these results suggest that PI3K and PLC activation is involved in the anti-inflammatory effect of DMPP. PLC limited, but constant activation could induce, the depletion of intracellular calcium stores, leading to the anti-inflammatory effect of DMPP.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge