Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Thrombosis Research 2003-Apr

Effect of hyperosmolarity on agonist-induced increases of intracellular calcium in human platelets.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Oscar A Gende

Parole chiave

Astratto

BACKGROUND

Hypertonic solutions are useful for the management of hypovolemic shock but cause impairment in platelet function. This effect would reduce the ischemia/reperfusion damage caused by activated platelets, but it could be the cause of aggravating blood loss in case of uncontrolled hemorrhage. In this paper, it was studied if osmotic shrinkage of platelets affects the changes in intracellular calcium concentration ([Ca(2+)](i)) induced by thrombin or adenosine 5' diphosphate (ADP). Furthermore, it was investigated if hypertonic solutions change the mobilization from intracellular stores or the calcium entry. Previous reports from our laboratory described that the capacitative calcium entry is increased by alkalization and also that hyperosmolarity has an alkalinizing effect on human platelets so it was hypothesized that hyperosmolarity would be able to modify agonist-induced calcium entry.

METHODS

To study the response to agonists, platelets loaded with 2'7'-bis(carboxyethyl)-5(6)-carboxy-fluorescein (FURA 2) were incubated at 37 degrees C for 500 s in a N-2-hidroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)-buffered solution with 1 mM CaCl(2). The osmolarity of the solution was elevated by the addition of 200 mM mannitol or sucrose and after the stimulation with 0.1 IU/ml of thrombin or 100 microM ADP, [Ca(2+)](i) increases were compared. Platelets incubated in zero calcium/EGTA were stimulated with these agonists or with 0.1 microM thapsigargin to separately study the effect of hyperosmolarity on both calcium mobilization from intracellular stores and extracellular calcium entry.

RESULTS

It was found that hypertonic solutions decrease the [Ca(2+)](i) peak induced by the agonist: The increase of [Ca(2+)](i) in the presence of 200 mM mannitol produced by 100 microM ADP was 62+/-6% and response to 0.1 IU/ml thrombin was 74+/-7% of the increase in isotonic control solution. In the case of ADP, both mobilization and calcium entry were reduced to 66+/-3% and 65+/-6% of isotonic control, respectively. In the case of thrombin, only the mobilization showed a significant change (79+/-2% of parallel control). In platelets depleted by thapsigargin, the capacitative calcium entry was increased in hypertonic mannitol (174+/-25% of the isotonic control). Similar results were obtained with hypertonic sucrose solutions.

CONCLUSIONS

In spite of the stimulatory effect of hyperosmolarity on capacitative calcium entry observed in platelets in which the calcium stores were depleted with thapsigargin, the full response of intracellular calcium to the agonists tested (ADP and thrombin) was reduced by an increase in osmolarity. The decreased Ca(2+) mobilization observed may play a role in the reduction in hypertonic media of accompanying platelets responses such as aggregation or shape change.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge