Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Circulation 1994-Mar

Effect of physical training on exercise-induced hyperkalemia in chronic heart failure. Relation with ventilation and catecholamines.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
C W Barlow
M S Qayyum
P P Davey
J Conway
D J Paterson
P A Robbins

Parole chiave

Astratto

BACKGROUND

The exercise-induced rise in arterial potassium concentration ([K+]a) may contribute to exercise hyperpnea and could play a role in exertional fatigue. This study was designed to determine whether the exercise-induced rise in [K+]a is altered in patients with chronic heart failure (CHF) and whether physical training affects K+ homeostasis.

RESULTS

We evaluated 10 subjects with CHF (ejection fraction, 23 +/- 3.9%) and 10 subjects with normal left ventricular function (NLVF) who had undergone previous coronary artery graft surgery (ejection fraction, 63 +/- 8.6%). Subjects performed an incremental cycle ergometer exercise test before and after a physical training or detraining program. Changes in [K+]a and ventilation (VE) during exercise were closely related in both groups. Subjects with CHF did less absolute work and had reduced maximal oxygen consumption (VO2max) compared with subjects with NLVF (P < .01). Exercise-induced rises in [K+]a, VE, norepinephrine, lactate, and heart rate were greater at matched absolute work rates in subjects with CHF than in subjects with NLVF (P < .01). However, when the rise in [K+]a was plotted against percentage of VO2max to match for relative submaximal effort, there were no differences between the two groups. Physical training resulted in reduced exercise-induced hyperkalemia at matched submaximal work rates in both groups (P < .01) despite no associated change in the concentration of arterial catecholamines. At maximal exercise when trained, peak increases in [K+]a were unaltered, but peak concentrations of catecholamines were raised (P < .05). The decrease in VE at submaximal work rates after training was not significant with this incremental exercise protocol, but both groups had an increased peak VE when trained (P < .01).

CONCLUSIONS

Exercise-induced rises in [K+]a, catecholamines, and VE are greater at submaximal work rates in subjects with CHF than in subjects with NLVF. Physical training reduces the exercise-induced rise in [K+]a but does not significantly decrease VE during submaximal exercise with this incremental cycle ergometry protocol. The reduction in exercise-induced hyperkalemia after training is not the result of altered concentrations of arterial catecholamines. The pathophysiological significance of the increased exercise-induced hyperkalemia in CHF and the mechanisms of improved K+ homeostasis with training have yet to be established.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge