Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Pharmacology 1998-Sep

Effects of arachidonic acid metabolism on hypoxic vasoconstriction in rabbit lungs.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
N Weissmann
W Seeger
J Conzen
L Kiss
F Grimminger

Parole chiave

Astratto

Hypoxic pulmonary vasoconstriction is an essential mechanism that matches lung perfusion to ventilation, thus optimising pulmonary gas exchange. Despite its pathophysiological relevance, the mechanism of hypoxic pulmonary vasoconstriction still remains enigmatic. We investigated whether arachidonic acid metabolism is involved in the regulation of hypoxic pulmonary vasoconstriction in isolated, buffer-perfused rabbit lungs. Seven inhibitors were employed to determine the contribution of different vasoactive lipoxy- and cyclooxygenase mediators as well as cytochrome P450 products on the magnitude of hypoxic pulmonary vasoconstriction. Hypoxic pulmonary vasoconstriction was not affected by (i) the cyclooxygenase inhibitor acetylsalicylic acid, (ii) the thromboxane A2 receptor antagonist BM13.505, (iii) the 5'-lipoxygenase inhibitor MK886, and (iv) the lipoxygenase and cyclooxygenase inhibitor BW755c. The hypoxia-elicited pressor response was prominently inhibited by (i) nordihydroguaiaretic acid (50-150 microM), an inhibitor of lipoxygenase and cyclooxygenase and (ii) methoxsalen (100 microM) and 1-aminobenzotriazole (1-10 mM), two inhibitors of cytochrome P450-derived metabolites. However, no specificity for the regulation of hypoxic pulmonary vasoconstriction was found, as corresponding inhibitory potency of these agents was noted when vasoconstriction was achieved by the stable thromboxane analogue U46619 under conditions of normoxia. We conclude that there is no evidence for a specific involvement of different pathways of arachidonic acid metabolism in the mechanism of hypoxic pulmonary vasoconstriction in rabbits.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge