Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pediatric Research 2002-Jul

Effects of hypoxia on respiratory neural output and lower esophageal sphincter pressure in piglets.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Pakaphan Kiatchoosakun
Ismail A Dreshaj
Jalal M Abu-Shaweesh
Musa A Haxhiu
Richard J Martin

Parole chiave

Astratto

We have previously documented anatomic and functional relationships between ventilatory and autonomic neural output. Therefore, we hypothesized in this study that hypoxia-induced changes in respiratory neural output are associated with changes in autonomic regulation of lower esophageal sphincter (LES) pressure. Respiratory neural output, heart rate, and LES pressure were measured before and during a 3-min exposure to 8% oxygen (balance nitrogen) in 12 3- to 7-d-old piglets. Respiratory neural output was determined from diaphragmatic electromyogram and LES pressure from an esophageal catheter. Studies were repeated after atropine administration in eight animals. Hypoxic exposure resulted in significant increases in diaphragmatic amplitude, respiratory rate, and minute diaphragmatic activity as well as heart rate. The biphasic response of diaphragm amplitude peaked at 1 min, whereas the responses of respiratory frequency and heart rate were sustained. Hypoxia caused a 50% increase in LES pressure (p < 0.05), which was eliminated by i.v. atropine administration. Development of apnea during subsequent hyperoxic exposure was always followed by a decline in LES pressure. Hypoxia-induced increase in respiratory neural output and accompanying increase in heart rate are associated with enhanced constrictive output to the LES. Blockade by atropine implicates a peripheral cholinergic mechanism for this LES response. We speculate that whereas hypoxia in the presence of enhanced respiratory neural output seems to be protective against reflux, decreased respiratory drive and accompanying apnea may be associated with a decline in LES tone and predispose to gastroesophageal reflux.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge