Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cochrane Database of Systematic Reviews 2003

Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterols, and triglyceride.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
G Jürgens
N A Graudal

Parole chiave

Astratto

BACKGROUND

One of the controversies in preventive medicine is, whether a general reduction in sodium intake can decrease the blood pressure of a population and thereby reduce cardiovascular mortality and morbidity. In recent years the debate has been extended by studies indicating that reducing sodium intake has effects on the hormone and lipid profile.

OBJECTIVE

To estimate the effects of low sodium versus high sodium intake on systolic and diastolic blood pressure (SBP and DBP), plasma or serum levels of renin, aldosterone, catecholamines, cholesterol and triglycerides.

METHODS

"MEDLINE" and reference lists of relevant articles were searched from 1966 through December 2001.

METHODS

Studies randomising persons to low sodium and high sodium diets were included if they evaluated at least one of the above outcome parameters.

METHODS

Two authors independently extracted the data, which were analysed by means of Review Manager 4.1.

RESULTS

In 57 trials of mainly Caucasians with normal blood pressure, low sodium intake reduced SBP by -1.27 mm Hg (CI: -1.76; -0.77)(p<0.0001) and DBP by -0.54 mm Hg (CI: -0.94; -0.14) (p = 0.009) as compared to high sodium intake. In 58 trials of mainly Caucasians with elevated blood pressure, low sodium intake reduced SBP by -4.18 mm Hg (CI: -5.08; - 3.27) (p < 0.0001) and DBP by -1.98 mm Hg (CI: -2.46; -1.32) (p < 0.0001) as compared to high sodium intake. The median duration of the intervention was 8 days in the normal blood pressure trials (range 4-1100) and 28 days in the elevated blood pressure trials (range 4-365). Multiple regression analyses showed no independent effect of duration on the effect size. In 8 trials of blacks with normal or elevated blood pressure, low sodium intake reduced SBP by -6.44 mm Hg (CI: -9.13; -3.74) (p < 0.0001) and DBP by -1.98 mm Hg (CI: -4.75; 0.78) (p = 0.16) as compared to high sodium intake. The magnitude of blood pressure reduction was also greater in a single trial in Japanese patients. There was also a significant increase in plasma or serum renin, 304% (p < 0.0001), aldosterone, 322%, (p < 0.0001), noradrenaline, 30% (p < 0.0001), cholesterol, 5.4% (p < 0.0001) and LDL cholesterol, 4.6% (p < 0.004), and a borderline increase in adrenaline, 12% (p = 0.04) and triglyceride, 5.9% (p = 0.03) with low sodium intake as compared with high sodium intake.

CONCLUSIONS

The magnitude of the effect in Caucasians with normal blood pressure does not warrant a general recommendation to reduce sodium intake. Reduced sodium intake in Caucasians with elevated blood pressure has a useful effect to reduce blood pressure in the short-term. The results suggest that the effect of low versus high sodium intake on blood pressure was greater in Black and Asian patients than in Caucasians. However, the number of studies in black (8) and Asian patients (1) was insufficient for different recommendations. Additional long-term trials of the effect of reduced dietary sodium intake on blood pressure, metabolic variables, morbidity and mortality are required to establish whether this is a useful prophylactic or treatment strategy.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge