Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2012-Nov

Enhancement of volatile aglycone recovery facilitated by acid hydrolysis of glucosides from Nicotiana flower species.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
William M Coleman
Michael F Dube
Anthony R Gerardi
Mehdi Ashraf-Khorassani
Larry T Taylor

Parole chiave

Astratto

Four different Nicotiana flowers (Nicotiana alata (alata), Nicotiana sylvestris (Sy), Nicotiana suaveolens (Su), and Nicotiana tabacum cv. Flue-Cured (FC)) from farms in Virginia and North Carolina were harvested and promptly quenched with liquid nitrogen and hand-ground prior to analysis. Each Nicotiana flower was pre-extracted with hexane to remove unbound volatiles. Fifteen standard compounds that were thought to be in the pre-extract were employed to aid in GC-MS identification and quantification. Glucosides were then chromatographically isolated and next hydrolyzed via 2 M sulfuric acid for 24 h at 75 °C. For each flower, the products of hydrolysis were extracted in tandem with hexane and dichloromethane (DCM) prior to analysis by GC-MS. The mixture of hexane and DCM extracts of the flowers after hydrolysis were then analyzed for each of 15 external standards via GC-MS to determine the concentration of any isolated flower-derived aglycone. Quantitative results for each of the possible 15 free volatile compounds extracted before and after hydrolysis were compared. Benzyl alcohol, phenethyl alcohol, and cis-3-hexenol were found in all Nicotiana both before and after acid hydrolysis. Enormous increases in the mass of benzyl alcohol and phenethyl alcohol were obtained with all flowers as a result of acid hydrolysis. With selected Nicotiana flowers, significant increases were observed for eugenol and cinnamaldehyde. The significant increases observed in cinnamaldehyde and eugenol upon mild acid hydrolysis strongly indicate that this approach could be a viable alternative process for the production scale isolation of these important natural flavor compounds.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge