Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Electrocardiology

Functional and developmental properties of human embryonic stem cells-derived cardiomyocytes.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Ofer Binah
Katya Dolnikov
Oshra Sadan
Mark Shilkrut
Naama Zeevi-Levin
Michal Amit
Asaf Danon
Joseph Itskovitz-Eldor

Parole chiave

Astratto

Cardiovascular diseases are the most frequent cause of death in the industrialized world, with the main contributor being myocardial infarction. Given the high morbidity and mortality rates associated with congestive heart failure, the shortage of donor hearts for transplantation, complications resulting from immunosuppression, and long-term failure of transplanted organs, regeneration of the diseased myocardium by cell transplantation is an attractive therapeutic modality. Because it is desired that the transplanted cells fully integrate within the diseased myocardium, contribute to its contractile performance, and respond appropriately to various physiological stimuli (eg, beta-adrenergic stimulation), our major long-term goal is to investigate the developmental changes in functional properties and hormonal responsiveness of human embryonic stem cells-derived cardiomyocytes (hESC-CM). Furthermore, because one of the key obstacles in advancing cardiac cell therapy is the low differentiation rate of hESC into cardiomyocytes, which reduces the clinical efficacy of cell transplantation, our second major goal is to develop efficient protocols for directing the cardiomyogenic differentiation of hESC in vitro. To accomplish the first goal, we investigated the functional properties of hESC-CM (<90 days old), respecting the contractile function and the underlying intracellular Ca(2+) handling. In addition, we performed Western blot analysis of the key Ca(2+)-handling proteins SERCA2, calsequestrin, phospholamban and the Na(+)/Ca(2+) exchanger. Our major findings were the following: (1) In contrast to the mature myocardium, hESC-CM exhibit negative force-frequency relationships and do not present postrest potentiation. (2) Ryanodine and thapsigargin do not affect the [Ca(2+)](i) transient and contraction, suggesting that, at this developmental stage, the contraction does not depend on sarcoplasmic reticulum Ca(2+) release. (3) In agreement with the finding that a voltage-dependent Ca(2+) current is present in hESC-CM and contributes to the mechanical function, verapamil completely blocks contraction. (4) Although hESC-CM express SERCA2 and Na(+)/Ca(2+) exchanger at levels comparable to those of the adult human myocardium, calsequestrin and phospholamban are not expressed. (4) In agreement with other reports, hESC-CM are responsive to beta-adrenergic stimulation. These findings show that the mechanical function related to intracellular Ca(2+) handling of hESC-CM differs from the adult myocardium, probably because of immature sarcoplasmic reticulum capacity.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge