Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Human Molecular Genetics 2014-Oct

Gene dosage of the transcription factor Fingerin (bHLHA9) affects digit development and links syndactyly to ectrodactyly.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Omri Schatz
Erez Langer
Nissim Ben-Arie

Parole chiave

Astratto

Distal limb deformities are congenital malformations with phenotypic variability, genetic heterogeneity and complex inheritance. Among these, split-hand/foot malformation is an ectrodactyly with missing central fingers, yielding a lobster claw-like hand, which when combined with long-bone deficiency is defined as split-hand/foot malformation and long-bone deficiency (SHFLD) that is genetically heterogeneous. Copy number variation (CNV) consisting of 17p13.3 duplication was identified in unrelated pedigrees, underlying SHFLD3 (OMIM 612576). Although the transcription factor Fingerin (bHLHA9) is the only complete gene in the critical region, its biological role is not yet known and there are no data supporting its involvement in mammalian limb development. We have generated knockout mice in which only the entire coding region of Fingerin was deleted, and indeed found that most null mice display some limb defects. These include various levels of simple asymmetrical syndactyly, characterized by webbed fingers, generated by incomplete separation of soft, but not skeletal, tissues between forelimb digits 2 and 3. As expected, hand pads of Fingerin null embryos exhibited reduced apoptosis between digital rays 2 and 3. This defect was shown to cause syndactyly when the same limbs were grown ex vivo following the apoptosis assay. Extrapolating from mouse data, we suggest that Fingerin loss-of-function in humans may underlie MSSD syndactyly (OMIM 609432), which was mapped to the same locus. Taken together, Fingerin gene dosage links two different congenital limb malformations, syndactyly and ectrodactyly, which were previously postulated to share a common etiology. These results add limb disorders to the growing list of diseases resulting from CNV.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge