Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Cell 1995-Dec

Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
S R Norris
T R Barrette
D DellaPenna

Parole chiave

Astratto

Carotenoids are C40 tetraterpenoids synthesized by nuclear-encoded multienzyme complexes located in the plastids of higher plants. To understand further the components and mechanisms involved in carotenoid synthesis, we screened Arabidopsis for mutations that disrupt this pathway and cause accumulation of biosynthetic intermediates. Here, we report the identification and characterization of two nonallelic albino mutations, pds1 and pds2 (for phytoene desaturation), that are disrupted in phytoene desaturation and as a result accumulate phytoene, the first C40 compound of the pathway. Surprisingly, neither mutation maps to the locus encoding the phytoene desaturase enzyme, indicating that the products of at least three loci are required for phytoene desaturation in higher plants. Because phytoene desaturase catalyzes an oxidation reaction, it has been suggested that components of an electron transport chain may be involved in this reaction. Analysis of pds1 and pds2 shows that both mutants are plastoquinone and tocopherol deficient, in addition to their inability to desaturate phytoene. Separate steps of the plastoquinone/tocopherol biosynthetic pathway are affected by these two mutations. The pds1 mutation affects the enzyme 4-hydroxyphenylpyruvate dioxygenase because it can be rescued by growth on the product but not the substrate of this enzyme, homogentisic acid and 4-hydroxyphenylpyruvate, respectively. The pds2 mutation most likely affects the prenyl/phytyl transferase enzyme of this pathway. Because tocopherol-deficient mutants in the green alga Scenedesmus obliquus can synthesize carotenoids, our findings demonstrate conclusively that plastoquinone is an essential component in carotenoid synthesis. We propose a model for carotenoid synthesis in photosynthetic tissue whereby plastoquinone acts as an intermediate electron carrier between carotenoid desaturases and the photosynthetic electron transport chain.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge