Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2006-Nov

Genetic engineering of Nicotiana tabacum for reduced nornicotine content.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Lily B Gavilano
Nicholas P Coleman
Leigh-Emma Burnley
Melissa L Bowman
Newton E Kalengamaliro
Alec Hayes
Lowell Bush
Balazs Siminszky

Parole chiave

Astratto

Nornicotine is an undesirable secondary alkaloid in cultivated tobacco, because it serves as a precursor to N'-nitrosonornicotine (NNN), a tobacco-specific nitrosamine with suspected carcinogenic properties. Nornicotine is produced through the oxidative N-demethylation of nicotine by a nicotine N-demethylase enzyme during the senescence and curing of tobacco leaves. While the nornicotine content of most commercial burley tobacco is low, a process termed "conversion" can bestow considerably increased nornicotine levels in a portion of the plants within the population. Previously, we isolated a nicotine N-demethylase gene, designated CYP82E4, and demonstrated that RNAi-induced silencing of CYP82E4 and its close homologues is an effective means for suppressing nicotine to nornicotine conversion. In this study, we used real-time polymerase chain reaction to confirm the central role of CYP82E4 in nicotine N-demethylation by demonstrating that the transcript accumulation of CYP82E4 is enhanced as much as 80-fold in converter vs nonconverter tobacco. We also show the design of an optimized RNAi construct (82E4Ri298) that suppressed nicotine to nornicotine conversion from 98% to as low as 0.8% in a strong converter tobacco line, a rate of nornicotine production that is about 3.6-fold lower than typically detected in commercial varieties. Southern blot analysis showed that a single copy of the RNAi transgene was as effective in suppressing nornicotine accumulation as multiple copies. Greenhouse-grown transgenic plants transformed with the RNAi construct were morphologically indistinguishable from the empty vector or wild-type controls. These results demonstrate that the genetic transformation of tobacco with the 82E4Ri298 construct is an effective strategy for reducing nornicotine and ultimately NNN levels in tobacco.

BACKGROUND

Alkaloid; cytochrome P450; gene silencing; nicotine N-demethylase; N'-nitrosonornicotine; plant genetic engineering; metabolic engineering; Nicotiana tabacum L.; real-time PCR; RNA interference; tobacco-specific nitrosamines.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge