Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2016

Gray Matter Hypoxia in the Brain of the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Thomas W Johnson
Ying Wu
Nabeela Nathoo
James A Rogers
V Wee Yong
Jeff F Dunn

Parole chiave

Astratto

BACKGROUND

Multiple sclerosis (MS) has a significant inflammatory component and may have significant gray matter (GM) pathophysiology. Brain oxygenation is a sensitive measurement of the balance between metabolic need and oxygen delivery. There is evidence that inflammation and hypoxia are interdependent. In this paper, we applied novel, implanted PO2 sensors to measure hypoxia in cortical and cerebellar GM, in an inflammation-induced mouse model of MS.

OBJECTIVE

Quantify oxygenation in cortical and cerebellar GM in the awake, unrestrained experimental autoimmune encephalomyelitis (EAE) mouse model and to relate the results to symptom level and disease time-course.

METHODS

C57BL/6 mice were implanted with a fiber-optic sensor in the cerebellum (n = 13) and cortex (n = 24). Animals were induced with stimulation of the immune response and sensitization to myelin oligodendrocyte glycoprotein (MOG). Controls did not have MOG. We measured PO2 in awake, unrestrained animals from pre-induction (baseline) up to 36 days post-induction for EAE and controls.

RESULTS

There were more days with hypoxia than hyperoxia (cerebellum: 34/67 vs. 18/67 days; cortex: 85/112 vs. 22/112) compared to time-matched controls. The average decline in PO2 on days that were significantly lower than time-matched controls was -8.8±6.0 mmHg (mean ± SD) for the cerebellum and -8.0±4.6 for the cortex. Conversely, the average increase in PO2 on days that were significantly hyperoxic was +3.2±2.8 mmHg (mean ± SD) for the cerebellum and +0.8±2.1 for the cortex. Cortical hypoxia related to increased behavioral deficits. Evidence for hypoxia occurred before measurable behavioral deficits.

CONCLUSIONS

A highly inflammatory condition primed to a white matter (WM) autoimmune response correlates with significant hypoxia and increased variation in oxygenation in GM of both cerebellum and cortex in the mouse EAE model of MS.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge