Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular and Cellular Biology 1997-Sep

Identification of tumor-specific paclitaxel (Taxol)-responsive regulatory elements in the interleukin-8 promoter.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
L F Lee
J S Haskill
N Mukaida
K Matsushima
J P Ting

Parole chiave

Astratto

Paclitaxel (Taxol) is a novel chemotherapeutic drug that is effective against breast and ovarian cancers. Although the primary target of paclitaxel is microtubules, its efficacy exceeds that of conventional microtubule-disrupting agents, suggesting that it may have additional cellular effects. Previously, we demonstrated that paclitaxel can induce interleukin-8 (IL-8) gene expression at the transcriptional level in subsets of human ovarian cancer lines. In this as well as the previous report, we present evidence that this ability is not linked to the lipopolysaccharide pathway of IL-8 gene induction. The present study identifies the cis-acting elements and trans-acting factors involved in this induction by transfecting DNA constructs containing the 5'-flanking region of the IL-8 gene linked to the chloramphenicol acetyltransferase reporter gene into paclitaxel-responsive and nonresponsive ovarian cancer cells (responsiveness refers to the IL-8 response). Paclitaxel only activated the IL-8 promoter in responsive cells. The AP-1 and NF-kappaB binding sites in the IL-8 promoter are required for activation by paclitaxel; in contrast, a C/EBP site required for IL-8 promoter activation in other cell types is not involved. Gel shift assays demonstrate that paclitaxel causes a marked increase in protein binding to the NF-kappaB and AP-1 consensus binding sequences in the paclitaxel-responsive ovarian cells, but not the nonresponsive cells. The induction of NF-kappaB and AP-1 binding is reduced by the addition of protein kinase C inhibitors and cyclic AMP effector, respectively. These results demonstrate a molecular mechanism for cell-specific paclitaxel-induced IL-8 gene expression which may have clinical relevance.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge