Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neuroscience 2006

Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
L Cristino
L de Petrocellis
G Pryce
D Baker
V Guglielmotti
V Di Marzo

Parole chiave

Astratto

Cannabinoid type 1 receptors and transient receptor potential vanilloid type 1 channels have been proposed to act as metabotropic and ionotropic receptors, respectively, for two classes of endogenous polyunsaturated fatty acid amides, the acylethanolamides and the acyldopamides. Furthermore, we and others have shown that functional crosstalk occurs between these two receptors when they are expressed in the same cell. Although demonstrated in sensory neurons of the dorsal root ganglia, spinal cord and myenteric neurons, co-expression of cannabinoid type 1 and transient receptor potential vanilloid type 1 has not yet been studied in the brain. In the present study, we addressed this issue by using commercially available specific antibodies whose specificity was confirmed by data obtained with brains from cannabinoid type 1(-/-) and transient receptor potential vanilloid type 1(-/-) mice. Double cannabinoid type 1/transient receptor potential vanilloid type 1 immunofluorescence and single cannabinoid type 1 or transient receptor potential vanilloid type 1 avidin-biotin complex immunohistochemistry techniques were performed and both methods used point to the same results. Cannabinoid type 1/transient receptor potential vanilloid type 1 expression was observed in the hippocampus, basal ganglia, thalamus, hypothalamus, cerebral peduncle, pontine nuclei, periaqueductal gray matter, cerebellar cortex and dentate cerebellar nucleus. In particular, in the hippocampus, cannabinoid type 1/transient receptor potential vanilloid type 1 expression was detected on cell bodies of many pyramidal neurons throughout the CA1-CA3 subfields and in the molecular layer of dentate gyrus. In the cerebellar cortex, expression of cannabinoid type 1/transient receptor potential vanilloid type 1 receptors was found surrounding soma and axons of the vast majority of Purkinje cell bodies, whose cytoplasm was found unstained for both receptors. Cannabinoid type 1 and transient receptor potential vanilloid type 1 immunoreactivity was also detected in: a) the globus pallidus and substantia nigra, in which some intensely transient receptor potential vanilloid type 1 immunopositive cell bodies were found in dense and fine cannabinoid type 1/transient receptor potential vanilloid type 1 positive and cannabinoid type 1 positive nerve fiber meshworks, respectively; b) the cytoplasm of thalamic and hypothalamic neurons; and c) some neurons of the ventral periaqueductal gray. These data support the hypothesis of a functional relationship between the two receptor types in the CNS.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge