Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 2016-Nov

Impact of summer drought on isoprenoid emissions and carbon sink of three Scots pine provenances.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
M Lüpke
M Leuchner
R Steinbrecher
A Menzel

Parole chiave

Astratto

Scots pine (Pinus sylvestris L.) provenances cover broad ecological amplitudes. In a greenhouse study, we investigated the impact of drought stress and rewetting on gas exchange for three provenances (Italy: Emilia Romagna; Spain: Alto Ebro; Germany: East-German lowlands) of 2-year old Scots pine seedlings. CO2, water vapour and isoprenoid exchange of stressed and control trees were quantified with a four-chamber dynamic-enclosure system in the controlled environment of a climate chamber. The three provenances showed distinct isoprenoid emission patterns and were classified into a non-Δ3-carene, with either high α-/β-pinene or β-myrcene fraction, and a Δ3-carene dominated type. Isoprenoid emission rates, net-photosynthesis and transpiration were reduced during summer drought stress and significantly recovered after rewetting. A seasonal increase of isoprenoid emission rates towards autumn was observed for all control groups. Compared with the German provenance, the Spanish and Italian provenances revealed higher isoprenoid emission rates and more plastic responses to drought stress and seasonal development, which points to a local adaptation to climate. As a result of drought, net carbon uptake and transpiration of trees was reduced, but recovered after rewetting. We conclude from our study that Scots pine isoprenoid emission is more variable than expected and sensitive to drought periods, likely impacting regional air chemistry. Thus, a provenance-specific emission assessment accounting for reduced emission during prolonged (summer) drought is recommend for setting up biogenic volatile organic compound emission inventories used in air quality models.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge