Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology and Environmental Safety 2019-Nov

Impacts of biochar and silicate fertilizer on arsenic accumulation in rice (Oryza sativa L.).

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Wenjia Jin
Zhigang Wang
Yafei Sun
Yongjie Wang
Chunjuan Bi
Limin Zhou
Xiangmin Zheng

Parole chiave

Astratto

Human exposure to arsenic (As) through rice consumption is a global food safety issue, especially in Southeast Asia. To investigate the impacts of biochar amendment (rice husk and smooth cordgrass-derived biochar) and/or silicate fertilizer on As mobility/phytoavailability in soil and on As accumulation in rice, pot and microcosm experiments were conducted. The results showed that both single application of low doses of biochar (0.5%, w/w) and coapplication of biochar with silicate fertilizer decreased As levels in grain (brown rice) by 14-16%, but not in straw and roots. The biodilution of As in grain resulting from increased grain biomass (by 6-21%) could be mainly a response to the decline in grain As levels with biochar and/or silicate fertilizer amendment. However, both applications exerted limited effects to decrease the overall As uptake by rice grain and straw, potentially due to the small changes in As mobility/phytoavailability in amended soil relative to the control, although plant-available silicon (Si) from amendment could potentially inhibit As uptake. Furthermore, microcosm-based anaerobic incubation experiments demonstrated that As levels in soil solution increased (up to 11-14-fold) with increasing doses of biochar amendment (up to 5%, w/w), possibly due to biochar enhancing the reductive dissolution of iron (oxyhydr) oxides via an increase in the total number of iron-reducing bacteria (up to 1.6-3.2-fold). Our findings suggested that a low application rate of biochar may not be a very effective approach for mitigating As accumulation in rice, while a high application rate could enhance the health risk of As in As-contaminated flooded soil.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge