Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Prosthodontics 2017-Aug

In Vitro Effects of Plantago Major Extract, Aucubin, and Baicalein on Candida albicans Biofilm Formation, Metabolic Activity, and Cell Surface Hydrophobicity.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Karina Pezo Shirley
L Jack Windsor
George J Eckert
Richard L Gregory

Parole chiave

Astratto

OBJECTIVE

To determine the in vitro effectiveness of Plantago major extract, along with two of its active components, aucubin and baicalein, on the inhibition of Candida albicans growth, biofilm formation, metabolic activity, and cell surface hydrophobicity.

METHODS

Twofold dilutions of P. major, aucubin, and baicalein were used to determine the minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), and the minimum biofilm inhibitory concentration (MBIC) of each solution. Separately, twofold dilutions of P. major, aucubin, and baicalein were used to determine the metabolic activity of established C. albicans biofilm using a 2,3-bis (2- methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-carboxanilide reduction assay. Twofold dilutions of P. major, aucubin, and baicalein were used to determine the cell surface hydrophobicity of treated C. albicans biofilm by a two-phase assay using hexadecane. The hydrophobicity percentage of the cell surface was then calculated. A mixed-model ANOVA test was used for intergroup comparisons.

RESULTS

The MICs of P. major extract (diluted 1:2 to 1:8), aucubin (61 to 244 μg/ml), and baicalein (0.0063 to 100 μg/ml) on the total growth of C. albicans were noticeable at their highest concentrations, and the inhibition was dose dependent. The MFC was evaluated after 48 hours of incubation, and aucubin (244 μg/ml) exhibited a strong fungicidal activity at its highest concentration against C. albicans growth. The MBIC indicated no growth or reduced growth of C. albicans biofilm at the highest concentrations of aucubin (61 to 244 μg/ml) and baicalein (25 to 100 μg/ml). Similarly, the effects of these reagents on C. albicans biofilm metabolic activity and hydrophobicity demonstrated high effectiveness at their highest concentrations.

CONCLUSIONS

P. major extract, aucubin, and baicalein caused a dose-dependent reduction on the total growth, biofilm formation, metabolic activity, and cell surface hydrophobicity of C. albicans. This demonstrates their effectiveness as antifungals and suggests their promising potential use as solutions for C. albicans biofilm-related infections.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge