Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Molecular Biology 1994-Oct

Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress-regulated genes in rice.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
R Takahashi
N Joshee
Y Kitagawa

Parole chiave

Astratto

Exposure of seedlings of a chilling-sensitive variety of rice (Oryza sativa L. cv. Wasetoittu) to water stress (0.5 M mannitol, 30 min) at room temperature induced a degree of chilling resistance. No such resistance was induced by exogenous abscisic acid (ABA) application (10 microM, 60 min). Upon short-term water stress, new transcripts were expressed in both seedlings and suspension-cultured cells. We suggest that the genes induced by short-term water stress, and not those induced by ABA, are related to acquired chilling resistance in this chilling-sensitive rice variety. A total of nine different cDNA clones, specifically induced by short-term water stress, were isolated by differential hybridization and partial sequencing. Northern hybridization analysis using RNAs from the seedlings subjected to chilling after water stress treatment reveal three distinct groups of above mentioned nine cDNA clones: wsi (water stress-induced) 18, 76, and 724, representative of genes whose expression increases, decreases, and remains almost fixed during chilling, respectively. The nucleotide and deduced amino acid sequences of the three representative clones were determined. Characteristic features of wsi18 are the presence of one set of amino acid sequence repeats, a conserved amino acid sequence common to LEA-group genes in the N-terminal region, and an alanine- and lysine-rich tract in the C-terminal region.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge