Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurotrauma 2018-Oct

Inhibiting High Mobility Group Box-1 Reduces Early Spinal Cord Edema and Attenuates Astrocyte Activation and Aquaporin-4 Expression after Spinal Cord Injury in Rats.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Lin Sun
Man Li
Xun Ma
Li Zhang
Junlai Song
Cong Lv
Yajun He

Parole chiave

Astratto

High mobility group box-1 (HMGB1) could function as an early trigger for pro-inflammatory activation after spinal cord injury (SCI). Spinal cord edema contributes to inflammatory response mechanisms and a poor clinical prognosis after SCI, for which efficient therapies targeting the specific molecules involved remain limited. This study was designed to evaluate the roles of HMGB1 on the regulation of early spinal cord edema, astrocyte activation, and aquaporin-4 (AQP4) expression in a rat SCI model. Adult female Sprague-Dawley rats underwent laminectomy at T10, and the SCI model was induced by a heavy falling object. After SCI, rats received ethyl pyruvate (EP) or glycyrrhizin (GL) via an intraperitoneal injection to inhibit HMGB1. The effects of HMGB1 inhibition on the early spinal cord edema, astrocyte activation (glial fibrillary acidic protein [GFAP] expression), and AQP4 expression after SCI (12 h-3 days) were analyzed. The results showed that EP or GL effectively inhibited HMGB1 expression in the spinal cord and HMGB1 levels in the serum of SCI rats. HMGB1 inhibition improved motor function, reduced spinal cord water content, and attenuated spinal cord edema in SCI rats. HMGB1 inhibition decreased SCI-associated GFAP and AQP4 overexpression in the spinal cord. Further, HMGB1 inhibition also repressed the activation of the toll-like receptor 4/myeloid differentiation primary response gene 88/nuclear factor-kappa B signaling pathway. These results implicate that HMGB1 inhibition improved locomotor function and reduced early spinal cord edema, which was associated with a downregulation of astrocyte activation (GFAP expression) and AQP4 expression in SCI rats.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge