Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neural Regeneration Research 2020-Apr

Inhibiting endogenous tissue plasminogen activator enhanced neuronal apoptosis and axonal injury after traumatic brain injury.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Jun-Jie Zhao
Zun-Wei Liu
Bo Wang
Ting-Qin Huang
Dan Guo
Yong-Lin Zhao
Jin-Ning Song

Parole chiave

Astratto

Tissue plasminogen activator is usually used for the treatment of acute ischemic stroke, but the role of endogenous tissue plasminogen activator in traumatic brain injury has been rarely reported. A rat model of traumatic brain injury was established by weight-drop method. The tissue plasminogen activator inhibitor neuroserpin (5 μL, 0.25 mg/mL) was injected into the lateral ventricle. Neurological function was assessed by neurological severity score. Neuronal and axonal injuries were assessed by hematoxylin-eosin staining and Bielschowsky silver staining. Protein level of endogenous tissue plasminogen activator was analyzed by western blot assay. Apoptotic marker cleaved caspase-3, neuronal marker neurofilament light chain, astrocyte marker glial fibrillary acidic protein and microglial marker Iba-1 were analyzed by immunohistochemical staining. Apoptotic cell types were detected by immunofluorescence double labeling. Apoptotic cells in the damaged cortex were detected by terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling staining. Degenerating neurons in the damaged cortex were detected by Fluoro-Jade B staining. Expression of tissue plasminogen activator was increased at 6 hours, and peaked at 3 days after traumatic brain injury. Neuronal apoptosis and axonal injury were detected after traumatic brain injury. Moreover, neuroserpin enhanced neuronal apoptosis, neuronal injury and axonal injury, and activated microglia and astrocytes. Neuroserpin further deteriorated neurobehavioral function in rats with traumatic brain injury. Our findings confirm that inhibition of endogenous tissue plasminogen activator aggravates neuronal apoptosis and axonal injury after traumatic brain injury, and activates microglia and astrocytes. This study was approved by the Biomedical Ethics Committee of Animal Experiments of Shaanxi Province of China in June 2015.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge