Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Immunopharmacology 2019-Aug

Inositol-requiring enzyme 1 alpha endoribonuclease specific inhibitor STF-083010 protects the liver from thioacetamide-induced oxidative stress, inflammation and injury by triggering hepatocyte autophagy.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Feng Zhan
Guoping Zhao
Xu Li
Shikun Yang
Wenjie Yang
Shun Zhou
Feng Zhang

Parole chiave

Astratto

Acute liver injury caused by toxins or drugs is a common condition that threatens patients' lives. Inositol-requiring enzyme 1 alpha (IRE1α), the most conserved endoplasmic reticulum (ER) stress sensor, has been implicated in the pathophysiology of liver injury. Activated IRE1α endoribonuclease (RNase) can splice X-box binding protein 1 (XBP1) mRNA to produce the sXBP1 transcription factor. STF-083010, a specific inhibitor of IRE1α RNase, has recently been suggested to exhibit anti-oxidant and anti-inflammatory properties in multiple injury models. However, it remains unknown whether STF-083010 has a protective effect against thioacetamide (TAA)-induced acute liver injury. Here, we demonstrated that IRE1α-sXBP1 signaling is involved in the development of TAA-induced acute liver injury and correlates with the severity of liver damage. STF-083010 protected against TAA-induced liver injury, as evidenced by higher survival rates in response to a lethal dose of TAA and less severe liver injury in response to a toxic dose of TAA. Mechanistic exploration showed that STF-083010 triggered hepatocyte autophagy in response to TAA stimulation both in vivo and in vitro, leading to reduced reactive oxygen species (ROS) production and attenuated hepatic inflammation. We also found that Beclin-1 played a critical role in STF-083010-mediated autophagy in response to TAA stimulation. Autophagy inhibition by chloroquine (CQ) in vivo and Beclin-1 knockdown in vitro markedly abrogated the protective role of STF-083010 against TAA-induced oxidative stress, inflammation and hepatotoxicity. Our results suggested STF-083010 as a potential therapeutic application to prevent TAA-induced acute liver injury.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge