Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Structural Biology 2001-Apr

Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
R Lyons Ryall
D E Fleming
I R Doyle
N A Evans
C J Dean
V R Marshall

Parole chiave

Astratto

The external appearance of urinary calcium oxalate (CaOx) crystals suggests that they are solid, homogeneous structures, despite their known association with proteins. Our aim was to determine whether proteins comprising the organic matrix of CaOx crystals are superficial or intracrystalline in order to clarify the role of urinary proteins in the formation of kidney stones. CaOx crystals were precipitated from centrifuged and filtered, or ultrafiltered, healthy human urine. They were then treated with dilute NaOH to remove bound proteins, partially demineralized with EDTA, or fractured and subjected to limited proteolysis before examination by low-resolution scanning electron microscopy or field emission scanning electron microscopy. Crystals precipitated from centrifuged and filtered urine had a complex interior network of protein distributed throughout the mineral phase, which appeared to comprise closely packed subcrystalline particles stacked in an orderly array among an amorphous organic matrix. This ultrastructure was not evident in crystals deposited in the absence of macromolecules, which were completely solid. This is the first direct evidence that crystals generated from cell-free systems contain significant amounts of protein distributed throughout a complex internal cribriform ultrastructure. Combined with mineral erosion in the acidic lysosomal environment, proteins inside CaOx crystals would render them susceptible to attack by urinary and intracellular renal proteases and facilitate their further dissolution or disruption into small particles and ions for removal by exocytosis. The findings also have broader ramifications for industry and the materials sciences, as well as the development and resorption of crystals in biomineralization systems throughout nature.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge