Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neuroscience 2005

Involvement of Rho-kinase in inflammatory and neuropathic pain through phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS).

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
S Tatsumi
T Mabuchi
T Katano
S Matsumura
T Abe
H Hidaka
M Suzuki
Y Sasaki
T Minami
S Ito

Parole chiave

Astratto

Myristoylated alanine-rich C-kinase substrate (MARCKS) is a major in vivo substrate for protein kinase C in the brain and has been implicated in cellular processes associated with cytoskeletal restructuring such as synaptic trafficking and neurotransmitter release. A phosphorylation-site specific antibody against Ser159-phospho-MARCKS (pS159-Mar-Ab) revealed that MARCKS is phosphorylated at Ser159 by Rho-kinase and that its phosphorylation is inhibited by the Rho-kinase specific inhibitor H-1152. Since the function of MARCKS is regulated by phosphorylation at multiple sites, here we examined the involvement of Rho-kinase in relation to phosphorylation of MARCKS at Ser159 in inflammatory and neuropathic pain by H-1152. When intrathecally administered 10 min before s.c. injection of formalin, H-1152 at 10 and 100 ng attenuated the second-phase, but not the first-phase, pain-like behaviors in the formalin test. Neuropathic pain induced by selective L5 spinal nerve transection was also relieved by intrathecal injection of H-1152. Nitric oxide synthase activity visualized by NADPH diaphorase histochemistry increased in the superficial layer of the spinal cord 30 min after formalin injection and 7 days after nerve transection, which were blocked by H-1152. Phosphorylation of MARCKS at Ser159 was detected in the spinal cord by pS159-Mar-Ab and the level of phosphorylation increased in the superficial layer after nerve transection. In contrast, immunoreactivities of neuronal nitric oxide synthase and MARCKS did not change significantly in the spinal cord before and after nerve transection. Taken together, the present study demonstrates that Rho-kinase is involved in inflammatory pain and the maintenance of neuropathic pain through phosphorylation of MARCKS at Ser159.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge