Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Virology 2005-Jun

Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
S Anna La Rocca
Rebecca J Herbert
Helen Crooke
Trevor W Drew
Thomas E Wileman
Penny P Powell

Parole chiave

Astratto

We show that cells infected with the pestivirus classical swine fever virus (CSFV) fail to produce alpha/beta interferon not only following treatment with double-stranded RNA but also after superinfection with a heterologous virus, the alphavirus Sindbis virus, a virus shown to normally induce interferon. We investigated whether the inhibition of interferon synthesis by CSFV involved a block in interferon regulatory factor 3 (IRF3) activity. Cells infected with CSFV exhibited a lack of translocation of green fluorescent protein-IRF3 to the nucleus; however, constitutive shuttling of IRF3 was not blocked, since it could still accumulate in the nucleus in the presence of leptomycin B. Interestingly subcellular fractionation analysis showed that IRF3 was lost from the cytoplasm of infected cells from 18 h postinfection onwards. Using IRF3 promoter-luciferase reporter constructs, we demonstrate that loss of IRF3 was due to an inhibition of transcription of the IRF3 gene in CSFV-infected cells. Further, we investigated which viral protein may be responsible for the inhibition of interferon and loss of IRF3. We used cell lines expressing the CSFV N-terminal protease (Npro) to show that this single viral protein, unique to pestiviruses, inhibited interferon production in response to Sindbis virus. In addition to being lost from CSFV-infected cells, IRF3 was lost from Npro-expressing cells. The results demonstrate a novel viral evasion of innate host defenses, where interferon synthesis is prevented by inhibiting transcription of IRF3 in CSFV-infected cells.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge