Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of NeuroImmune Pharmacology 2018-Nov

Melatonin Rescue Oxidative Stress-Mediated Neuroinflammation/ Neurodegeneration and Memory Impairment in Scopolamine-Induced Amnesia Mice Model.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Tahir Muhammad
Tahir Ali
Muhammad Ikram
Amjad Khan
Sayed Ibrar Alam
Myeong Ok Kim

Parole chiave

Astratto

Cognitive decline and memory impairment induced by oxidative brain damage are the critical pathological hallmarks of Alzheimer's disease (AD). Based on the potential neuroprotective effects of melatonin, we here explored the possible underlying mechanisms of the protective effect of melatonin against scopolamine-induced oxidative stress-mediated c-Jun N-terminal kinase (JNK) activation, which ultimately results in synaptic dysfunction, neuroinflammation, and neurodegeneration. According to our findings, scopolamine administration resulted in LPO and ROS generation and decreased the protein levels of antioxidant proteins such as Nrf2 and HO-1; however, melatonin co-treatment mitigated the generation of oxidant factors while improving antioxidant protein levels. Similarly, melatonin ameliorated oxidative stress-mediated JNK activation, enhanced Akt/ERK/CREB signaling, promoted cell survival and proliferation, and promoted memory processes. Immunofluorescence and western blot analysis indicated that melatonin reduced activated gliosis via attenuation of Iba-1 and GFAP. We also found that scopolamine promoted neuronal loss by inducing Bax, Pro-Caspase-3, and Caspase-3 and reducing the levels of the antiapoptotic protein Bcl-2. In contrast, melatonin significantly decreased the levels of apoptotic markers and increased neuronal survival. We further found that scopolamine disrupted synaptic integrity and, conversely, that melatonin enhanced synaptic integrity as indicated by Syntaxin, PSD-95, and SNAP-23 expression levels. Furthermore, melatonin ameliorated scopolamine-induced impairments in spatial learning behavior and memory formation. On the whole, our findings revealed that melatonin attenuated scopolamine-induced synaptic dysfunction and memory impairments by ameliorating oxidative brain damage, stress kinase expression, neuroinflammation, and neurodegeneration. Graphical Abstract The proposed schematic diagram showing the neuroprotective effect of melatonin against scopolamine-induced oxidative stress-mediated synaptic dysfunction, memory impairment neuroinflammation and neurodegeneration.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge