Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Anaesthesiology 2017-Mar

Moderate hyperoxia induces inflammation, apoptosis and necrosis in human umbilical vein endothelial cells: An in-vitro study.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Christina Hafner
Jing Wu
Lourdes Soto-Gonzalez
Christoph Kaun
Stefan Stojkovic
Johann Wojta
Verena Tretter
Klaus Markstaller
Klaus U Klein

Parole chiave

Astratto

Perioperative oxygen (O2) therapy can cause hyperoxia. Extreme hyperoxia can injure the cardiovascular system and remote organs.

Our primary objective was to test the hypothesis that exposure to moderate hyperoxia will induce injury to human umbilical vein endothelial cells (HUVECs), a model for studying the vascular endothelium under controlled conditions.

In-vitro cell culture study.

Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Austria. Study period from the beginning of October 2013 to the end of July 2014.

HUVECs were isolated from fresh umbilical cords.

HUVECs were exposed to constant hyperoxia (40% O2), cyclic hyperoxia/anoxia (40%/0% O2, average 20% O2), constant normoxia (21% O2) and constant anoxia (0% O2) using a cell culture bioreactor.

Cell growth, viability and release of IL-6, IL-8 and macrophage migration inhibitory factor were assessed at baseline and after 6, 12, 24 and 48 h of treatment. A phosphokinase array was performed after 60 min of treatment to identify activated cellular signalling pathways.

Constant hyperoxia and cyclic hyperoxia/anoxia impeded cell growth, reduced viability, triggered a proinflammatory response, proven by IL-6, IL-8 and migration inhibitory factor release, and induced apoptosis and necrosis. The inflammatory and cytotoxicity responses were highest in the constant hyperoxia group. Phosphokinase arrays revealed that different O2 concentrations activated distinct sets of cytoprotective and cell death-associated kinases, including mitogen-activated protein kinases, Src kinases, p53, Akt, mitogen-activated and stress-activated kinase, Lyn, Lck, p70S6, signal transducers and activators of transcription 5b and 6, glycogen synthase kinase 3a/b and 5' AMP-activated protein kinases 1/2.

Continuous moderate hyperoxia and cyclic moderate hyperoxia/anoxia-induced endothelial inflammation, apoptosis and necrosis. Given the large surface area of the vascular endothelium, moderately elevated O2 levels may contribute to cardiovascular inflammation and injury.

This in-vitro study was not registered in a database.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge