Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2013-Dec

Molecular characterization of Glycine max squalene synthase genes in seed phytosterol biosynthesis.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Hanh T M Nguyen
Anjanasree K Neelakadan
Truyen N Quach
Babu Valliyodan
Rajesh Kumar
Zhanyuan Zhang
Henry T Nguyen

Parole chiave

Astratto

The reaction catalyzed by squalene synthase (EC.2.5.1.21) that converts two molecules of farnesyl pyrophosphate to squalene represents a crucial branch point of the isoprenoid pathway in diverting carbon flux towards the biosynthesis of sterols. In the present study two soybean squalene synthase genes, GmSQS1 and GmSQS2, were identified in the soybean genome and functionally characterized for their roles in sterol biosynthesis. Both genes encode a deduced protein of 413 amino acids. Complementation assays showed that the two genes were able to convert yeast sterol auxotrophy erg9 mutant to sterol prototrophy. Expression of GmSQS1 and GmSQS2 was ubiquitous in roots, stem, leaves, flower and young seeds of soybean, however GmSQS1 transcript was preferential in roots while GmSQS2 transcript was more in leaves. Their expression was lower in response to dehydration treatments suggesting they might be negative regulators of water stress adaptation. Transgenic Arabidopsis plants overexpressing GmSQS1 driven by either constitutive or seed-specific promoters showed increases in the major end product sterols: campesterol, sitosterol and stigmasterol, which resulted in up to 50% increase in total sterol content in the seeds. The increase in the end product sterols by GmSQS1 overexpression was at the level achievable by previously reported overexpression of individual or combination of other key enzymes in the sterol pathway. Together the data demonstrate that soybean SQS genes play an important role in diverting carbon flux to the biosynthesis of the end product sterols in the seeds.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge