Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochimie

Molecular cloning, expression and characterization of a novel apoplastic invertase inhibitor from tomato (Solanum lycopersicum) and its use to purify a vacuolar invertase.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Ida Barbara Reca
Alexandre Brutus
Rossana D'Avino
Claude Villard
Daniela Bellincampi
Thierry Giardina

Parole chiave

Astratto

Protein inhibitors are molecules secreted by many plants. In a functional genomics approach, an invertase inhibitor (SolyCIF) of Solanum lycopersicum was identified at the Solanaceae Cornell University data bank (www.sgn.cornell.edu). It was established that this inhibitor is expressed mainly in the leaves, flowers and green fruit of the plant and localized in the cell wall compartment. The SolyCIF cDNA was cloned by performing RT-PCR, fully sequenced and heterologously expressed in Pichia pastoris X-33. The purified recombinant protein obtained by performing ion-exchange chromatography and gel filtration was further biochemically characterized and used to perform affinity chromatography. The latter step made it possible to purify natural vacuolar invertase (TIV-1), which showed high rates of catalytic activity (438.3 U mg(-1)) and efficiently degraded saccharose (K(m)=6.4mM, V(max)=2.9 micromol saccharosemin(-1) and k(c)(at)=7.25 x 10(3)s(-1) at pH 4.9 and 37 degrees C). The invertase activity was strongly inhibited in a dose-dependent manner by SolyCIF produced in P. pastoris. In addition, Gel-SDS-PAGE analysis strongly suggests that TIV-1 was proteolyzed in planta and it was established that the fragments produced have to be tightly associated for its enzymatic activity to occur. We further investigated the location of the proteolytic sites by performing NH(2)-terminal Edman degradation on the fragments. The molecular model for TIV-1 shows that the fragmentation splits the catalytic site of the enzyme into two halves, which confirms that the enzymatic activity is possible only when the fragments are tightly associated.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge