Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Proceedings of the National Academy of Sciences of the United States of America 1985-Sep

Molecular mechanism of water oxidation in photosynthesis based on the functioning of manganese in two different environments.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
T Kambara
Govindjee

Parole chiave

Astratto

We present a model of photosynthetic water oxidation that utilizes the property of higher-valent Mn ions in two different environments and the characteristic function of redox-active ligands to explain all known aspects of electron transfer from H(2)O to Z, the electron donor to P680, the photosystem II reaction center chlorophyll a. There are two major features of this model. (i) The four functional Mn atoms are divided into two groups of two Mn each: [Mn] complexes in a hydrophobic cavity in the intrinsic 34-kDa protein; and (Mn) complexes on the hydrophilic surface of the extrinsic 33-kDa protein. The oxidation of H(2)O is carried out by two [Mn] complexes, and the protons are transferred from a [Mn] complex to a (Mn) complex along the hydrogen bond between their respective ligand H(2)O molecules. (ii) Each of the two [Mn] ions binds one redox-active ligand (RAL), such as a quinone (alternatively, an aromatic amino acid residue). Electron transfer occurs from the reduced RAL to the oxidized Z. When the experimental data concerning atomic structure of the water-oxidizing center (WOC), electron transfer between the WOC and Z, the electronic structure of the WOC, the proton-release pattern, and the effect of Cl(-) are compared with the predictions of the model, satisfactory qualitative and, in many instances, quantitative agreements are obtained. In particular, this model clarifies the origin of the observed absorption-difference spectra, which have the same pattern in all S-state transitions, and of the effect of Cl(-)-depletion on the S states.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge