Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Critical Care Medicine 2008-Feb

N-acetylcysteine attenuates acute lung injury induced by fat embolism.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Demeral David Liu
Shang-Jhy Kao
Hsing I Chen

Parole chiave

Astratto

OBJECTIVE

Fat embolism syndrome is a clinical issue in subjects with long-bone fracture. It may lead to acute lung injury. The mechanisms and therapeutic regimen remain unclear. The present study was designed to investigate the pathologic and biochemical changes after fat embolization in isolated rat lungs, and to test the effects of posttreatment with N-acetylcysteine (NAC).

METHODS

Prospective, randomized, controlled animal study.

METHODS

University research laboratory.

METHODS

A total of 36 perfused lungs isolated from Sprague-Dawley rats.

METHODS

The isolated lungs were randomly assigned to receive physiologic saline solution (vehicle group), fat embolism (FE group), or FE with NAC posttreatment (FE + NAC group). There were 12 isolated lungs in each group. FE was produced by introduction of corn oil micelles. NAC at a dose 150 mg/kg was given 10 mins after FE.

RESULTS

The extent of acute lung injury was evaluated by lung weight change, protein concentration in bronchoalveolar lavage, and exhaled nitric oxide. We also measured the pulmonary arterial pressure and capillary filtration coefficient and determined the nitrate/nitrite, methylguanidine, tumor necrosis factor-alpha, and interleukin-1beta in lung perfusate. Histopathologic changes of the lung were examined and quantified. The levels of neutrophil elastase and myeloperoxidase were determined. The expression of inducible nitric oxide synthase was detected. FE caused acute lung injury as evidenced by the lung weight changes, increases in exhaled nitric oxide and protein concentration in bronchoalveolar lavage, pulmonary hypertension, increased capillary filtration coefficient, and lung pathology. The insult also increased nitrate/nitrite, methylguanidine, tumor necrosis factor-alpha, and interleukin-1beta in lung perfusate, increased neutrophil elastase and myeloperoxidase levels, and upregulated inducible nitric oxide synthase expression. Posttreatment with NAC abrogated these changes induced by FE.

CONCLUSIONS

FE caused acute lung injury and associated biochemical changes. Posttreatment with NAC was effective to alleviate the pathologic and biochemical changes caused by FE.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge